
ICT365

Software Development Frameworks

Dr Afaq Shah

XAML

Aims

Introduction to XAML

XAML Setup

XAML Namespace

XAML Building Block

Data Binding

Markup Extensions

What is XAML

• Short for Extensible Application Markup Language,
and pronounced “zammel”

• Markup (declarative) language used to instantiate
.NET objects

• XAML, like all XML-based languages, is case-
sensitive. That means you can’t substitute
<button> for <Button>

• can be applied to many different problem domains

• Visual Studio or Microsoft Expression Blend can be
used to generate the XAML

XAML Overview

XAML: eXtensible Application Markup Language

XML-based declarative language for UI

Each XML element maps to an object instance

Each attribute maps to a property of object

Event handlers can be declared

Still the handlers should be implemented in the
code-behind

… more features (will be explained shortly)

Visual Studio

Mainly for programmers

Most of the XAML
editing features are
provided

Can program
application logic

Blend for VS

Mainly for UI designers

Visual states can be
seen/edited without
compiling

Can create complex
animations

Tools for Editing XAML

XAML Editor in Visual Studio

Blend for Visual Studio

Advantages of XAML

• XAML code is short and clear to read

• Separation of designer code and logic

• Graphical design tools like Expression Blend
require XAML as source.

• The separation of XAML and UI logic allows it to
clearly separate the roles of designer and
developer

The Variants of XAML

• WPF XAML encompasses the elements that
describe WPF content, such as vector graphics,
controls, and documents.

• XPS XAML (XML Paper Specification) is the part of
WPF XAML that defines an XML representation for
formatted electronic documents.

• Silverlight XAML is a subset of WPF XAML that’s
intended for browser applications.

• WF XAML encompasses the elements that describe
Windows Workflow Foundation (WF) content.

XAML Compilation

• When you compile a WPF application in Visual
Studio, all your XAML files are converted into
BAML and that BAML is then embedded as a
resource into the final DLL or EXE assembly

Binary Application Markup Language

• A XAML file can be compiled into a Binary
Application Markup Language file having the
.BAML extension.), which may be inserted as a
resource into a .NET Framework assembly.

• At run-time, the framework engine extracts the
.BAML file from assembly resources, parses it,
and creates a corresponding WPF visual tree or
workflow. Having this format, the content is
faster loadable during runtime.

BAML Resources

• Compiled XAML = BAML not IL

• http://blogs.microsoft.co.il/tomershamam/2007
/05/25/compiled-xaml-baml-not-il/

• How to load BAML resources

• http://www.wpftutorial.net/baml.html

http://blogs.microsoft.co.il/tomershamam/2007/05/25/compiled-xaml-baml-not-il/
http://www.wpftutorial.net/baml.html

XAML Setup

XAML Setup

<Window x:Class = "FirstStepDemo.MainWindow"

xmlns = "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:d = "http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc = "http://schemas.openxmlformats.org/markup-compatibility/2006"

xmlns:local = "clr-namespace:FirstStepDemo"

mc:Ignorable = "d" Title = "MainWindow" Height = "300" Width = “300">

<Grid>

</Grid>

</Window>

• The top-level Window element, which represents the entire window

• The Grid, in which you can place all your controls

• For the Window element you’ll find several interesting attributes, including a class
name and two XML namespaces

• Also find the three properties which tells

• WPF to create a window with the caption MainWindow and to make it 300 by 300
units large

XAML Setup

<Window x:Class = "FirstStepDemo.MainWindow"

xmlns = "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:d = "http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc = "http://schemas.openxmlformats.org/markup-compatibility/2006"

xmlns:local = "clr-namespace:FirstStepDemo"

mc:Ignorable = "d" Title = "MainWindow" Height = "350" Width = "604">

<Grid>

<Button Content = "First Button" Height = "30" Width = "80"/>

<TextBlock Text = "Congratulations you have successfully build your first app"

Height = "30" Margin = "162,180,122,109"/>

</Grid>

</Window>

XAML Setup

XAML Namespaces

• To figure out which class you really want, the
XAML parser examines the XML namespace that’s
applied to the element.

• The xmlns attribute is a specialized attribute in the
world of XML that’s reserved for declaring
namespaces

XAML Namespaces (cont.)

• In the example, two namespaces are defined:

• http://schemas.microsoft.com/winfx/2006/xaml/presentation is
the core WPF namespace

this namespace is declared without a namespace
prefix, so every element is automatically placed in
this namespace

• http://schemas.microsoft.com/winfx/2006/xaml is the XAML
namespace.

This namespace is mapped to the prefix x. That
means you can apply it byplacing the namespace
prefix before the element name (as in
<x:ElementName>).

Using Other Namespaces

• You need to map the .NET namespace to an XML
namespace.

• XAML has a special syntax for doing this

• Prefix is the XML prefix you want to use to indicate
that namespace in your XAML markup. For example,
the XAML language uses the x: prefix.

• Namespace is the fully qualified .NET namespace
name.

• AssemblyName is the assembly where the type is
declared, without the .dll extension. This assembly
must be referenced in your project.

Other Namespaces: Examples

• Here’s how you would gain access to the basic types in
the System namespace and map them to the prefix sys:

• Here’s how you would gain access to the types you’ve
declared in the MyProject namespace of the current
project and map them to the prefix local:

• Now, to create an instance of a class in one of these
namespaces, you use the namespace prefix:

XAML vs C# Code

<Window x:Class = "XAMLVsCode.MainWindow"

xmlns = "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml" Title =
"MainWindow" Height = "350" Width = "525">

<StackPanel>

<TextBlock Text = "Welcome to XAML Tutorial" Height = "20" Width =
"200" Margin = "5"/>

<Button Content = "Ok" Height = "20" Width = "60" Margin = "5"/>

</StackPanel>

</Window>

XAML vs C# Code

XAML vs C# Code

using System;

using System.Text;

using System.Windows;

using System.Windows.Controls;

namespace XAMLVsCode {

/// <summary>

/// Interaction logic for MainWindow.xaml

/// </summary>

public partial class MainWindow : Window {

public MainWindow() {

InitializeComponent();

// Create the StackPanel

StackPanel stackPanel = new StackPanel();

this.Content = stackPanel;

// Create the TextBlock

TextBlock textBlock = new TextBlock();

textBlock.Text = "Welcome to XAML Tutorial";

textBlock.Height = 20;

textBlock.Width = 200;

textBlock.Margin = new Thickness(5);

stackPanel.Children.Add(textBlock);

// Create the Button

Button button = new Button();

button.Content = "OK";

button.Height = 20;

button.Width = 50;

button.Margin = new Thickness(20);

stackPanel.Children.Add(button);

}

}

}

XAML vs C# Code

XML Building Blocks

• Objects (create and initialize)

• XAML is a typically declarative language which
can create and instantiate objects. It is another
way to describe objects based on XML, i.e.,
which objects need to be created and how they
should be initialized before the execution of a
program. Objects can be:

• Containers (Stack Panel, Dock Panel)

• UI Elements / Controls (Button, TextBox, etc.)

• Resource Dictionaries

XML Building Blocks

• Objects can be modified easily by using
resources, styles and templates

• Resources

Resources are normally definitions connected with
some object that you just anticipate to use more
often than once. It is the ability to store data
locally for controls or for the current window or
globally for the entire applications.

XML Building Blocks

• Styles

• XAML framework provides several strategies to
personalize and customize the appearance of an
application. Styles give us the flexibility to set some
properties of an object and reuse these specific
settings across multiple objects for a consistent look.

• In styles, you can set only the existing properties of
an object such as Height, Width, Font size, etc.

• Only the default behavior of a control can be
specified.

• Multiple properties can be added into a style.

XML Building Blocks

XML Building Blocks

• Templates

A template describes the overall look and visual
appearance of a control. For each control, there is a
default template associated with it which gives the
appearance to that control. In XAML, you can easily
create your own templates when you want to
customize the visual behavior and visual appearance of
a control.

XML Building Blocks

Controls?

Sr.No. Controls & Description

1 ButtonA control that responds to
user input.

2 CalendarRepresents a control that
enables a user to select a date by
using a visual calendar display.

3 CheckBoxA control that a user can
select or clear.

4 ComboBoxA drop-down list of items
a user can select from.

5 ContextMenuGets or sets the context
menu element that should appear
whenever the context menu is
requested through a user interface
(UI) from within this element.

6 DataGridRepresents a control that
displays data in a customizable grid.

7 DatePickerA control that lets a user
select a date.

8 DialogsAn application may also
display additional windows to the
user to gather or display important
information.

9 GridViewA control that presents a
collection of items in rows and
columns that can scroll horizontally.

10 ImageA control that presents an
image.

11 ListBoxA control that presents an
inline list of items that the user can
select from.

12 MenusRepresents a Windows menu
control that enables you to
hierarchically organize elements
associated with commands and event
handlers.

13 PasswordBoxA control for entering
passwords.

14 PopupDisplays content on top of
existing content, within the bounds of
the application window.

15 ProgressBarA control that indicates
progress by displaying a bar.

16 ProgressRingA control that indicates
indeterminate progress by displaying a
ring.

17 RadioButtonA control that allows a user to
select a single option from a group of options.

18 RichEditBoxA control that lets a user edit rich
text documents with content like formatted
text, hyperlinks, and images.

19 ScrollViewerA container control that lets the
user pan and zoom its content.

20 SearchBoxA control that lets a user enter
search queries.

21 SliderA control that lets the user select from a
range of values by moving a Thumb control
along a track.

22 TextBlockA control that displays text.

23 TimePickerA control that lets a user set a time
value.

24 ToggleButtonA button that can be toggled
between 2 states.

https://www.tutorialspoint.com/xaml/xaml_button.htm
https://www.tutorialspoint.com/xaml/xaml_calender.htm
https://www.tutorialspoint.com/xaml/xaml_checkbox.htm
https://www.tutorialspoint.com/xaml/xaml_combobox.htm
https://www.tutorialspoint.com/xaml/xaml_contextmenu.htm
https://www.tutorialspoint.com/xaml/xaml_datagrid.htm
https://www.tutorialspoint.com/xaml/xaml_datapicker.htm
https://www.tutorialspoint.com/xaml/xaml_dialogs.htm
https://www.tutorialspoint.com/xaml/xaml_gridview.htm
https://www.tutorialspoint.com/xaml/xaml_image.htm
https://www.tutorialspoint.com/xaml/xaml_listbox.htm
https://www.tutorialspoint.com/xaml/xaml_menus.htm
https://www.tutorialspoint.com/xaml/xaml_passwordbox.htm
https://www.tutorialspoint.com/xaml/xaml_popup.htm
https://www.tutorialspoint.com/xaml/xaml_progressbar.htm
https://www.tutorialspoint.com/xaml/xaml_progressring.htm
https://www.tutorialspoint.com/xaml/xaml_radiobutton.htm
https://www.tutorialspoint.com/xaml/xaml_richeditbox.htm
https://www.tutorialspoint.com/xaml/xaml_scrollviewer.htm
https://www.tutorialspoint.com/xaml/xaml_searchbox.htm
https://www.tutorialspoint.com/xaml/xaml_slider.htm
https://www.tutorialspoint.com/xaml/xaml_textblock.htm
https://www.tutorialspoint.com/xaml/xaml_timepicker.htm
https://www.tutorialspoint.com/xaml/xaml_togglebutton.htm

Data Binding

• Data binding is a mechanism in XAML applications that
provides a simple and easy way for Windows Runtime
Apps using partial classes to display and interact with
data.

• The management of data is entirely separated from the
way the data is displayed in this mechanism.

• Data binding allows the flow of data between UI elements
and data object on user interface.

• When a binding is established and the data or your
business model changes, then it will reflect the updates
automatically to the UI elements and vice versa. It is also
possible to bind, not to a standard data source, but rather
to another element on the page. Data binding can be of
two types −

• One-way data binding

• Two-way data binding

Data Binding

One-Way Data Binding

In one-way binding, data is bound from its source
(that is the object that holds the data) to its target
(that is the object that displays the data).

Afaq Shah

Lecturer

Data Binding

Two-Way Data Binding

In two-way binding, the user can modify the data
through the user interface and have that data updated in
the source. If the source changes while the user is
looking at the view, you would want to update the view.

Markup Extensions

• Markup extensions are a method/technique to gain
a value that is neither a specific XAML object nor a
primitive type

• Markup extensions can be defined by opening and
closing curly braces and inside that curly braces, the
scope of the markup extension is defined.

• Data binding and static resources are markup
extensions.

• There are some predefined XAML markup extensions
in System.xaml which can be used.

Markup Extensions (cont.)

• <Window x:Class = "XAMLStaticResourcesMarkupExtension.MainWindow"

• xmlns = "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

• xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml"

• Title = "MainWindow" Height = "350" Width = "525">

•

• <Window.Resources>

• <SolidColorBrush Color = "Blue" x:Key = "myBrush"></SolidColorBrush>

• </Window.Resources>

•

• <Grid>

• <StackPanel Orientation = "Vertical">

• <TextBlock Foreground = "{StaticResource myBrush}" Text = "First Name"

• Width = "100" Margin = "10" />

• <TextBlock Foreground = "{StaticResource myBrush}" Text = "Last Name"

• Width = "100" Margin = "10" />

• </StackPanel>

• </Grid>

•

• </Window>

In Window.Resources, you
can see x:Key is used which
uniquely identifies the
elements that are created and
referenced in an XAML defined
dictionary to identify a
resource in a resource
dictionary.

Markup Extensions (cont.)

Markup Extensions (cont.)

<Window x:Class = "XAMLMarkupExtension.MainWindow"

xmlns =
"http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:my = "clr-namespace:XAMLMarkupExtension"

Title = "MainWindow" Height = "350" Width = "525">

<Grid>

<Button Content = "{my:MyMarkupExtension FirstStr =
Markup, SecondStr = Extension}"

Width = "200" Height = "20" />

</Grid>

</Window>

Markup Extensions (cont.)

Special Characters

• By the rules of XML, XAML pays special attention to
a few specific characters, such as & and < and >.

Special Characters (cont.)

• When the XAML parser reads this, it correctly
understands that you want to add the text <Click
Me> and it passes a string with this content,
complete with angled brackets, to the
Button.Content property.

• This limitation is a XAML detail and it won’t affect
you if you want to set the Button.Content property
in code

Shapes in XAML

Unlike many other declarative UI languages,
non-widget shapes are supported in XAML

Events

• In XAML, all of the controls expose some events so
that they can be subscribed for specific purposes.

• Whenever an event takes place, the application will
be notified and the program can react to them, e.g.,
close buttons are used to close a dialog.

• Click

• MouseDown

• MouseEnter

• MouseLeave

• MouseUp

• KeyDown

• KeyUp

Events (cont.)

<Window x:Class = "XAMLEventHandling.MainWindow"
xmlns = "http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml"
Title = "MainWindow" Height = "350" Width = "604">

<Grid>
<Button x:Name = "button1" Content = "Click" Click = "OnClick"

Width = "150" Height = "30" HorizontalAlignment = "Center" />
</Grid>

</Window>

Events (cont.)

using System;
using System.Windows;
using System.Windows.Controls;

namespace XAMLEventHandling {
/// <summary>

/// Interaction logic for MainWindow.xaml
/// </summary>

public partial class MainWindow : Window {
public MainWindow() {

InitializeComponent();
}
private void OnClick(object sender, RoutedEventArgs e) {

MessageBox.Show("Button is clicked!");
}

}
}

Events (cont.)

Examples

StackPanel example

<Window x:Class="Demo4.Content.Window1"

xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"

Title="Demo4.Content">

<StackPanel Orientation=“Vertical">

<Button Name="button1">Just text</Button>

<Button Name="button2">

<Image Source="banner.jpg" Name="image1" Width="100"/>

</Button>

<Button Name="button3">

<StackPanel Orientation="Vertical">

<TextBlock>Just text<LineBreak/>The next line</TextBlock>

<Image Source="banner.jpg" Name="image1" Width="100"/>

</StackPanel>

</Button>

</StackPanel>

</Window>

Grid example

<Window x:Class="Demo4.Content.Window1"

xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"

Title="Demo4.Content">

<Grid ShowGridLines="True">

<Grid.ColumnDefinitions>

<ColumnDefinition/>

<ColumnDefinition/>

<ColumnDefinition/>

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>

<RowDefinition/>

<RowDefinition/>

<RowDefinition/>

</Grid.RowDefinitions>

<TextBlock Grid.Column="0" Grid.Row="0">Top left</TextBlock>

<TextBlock Grid.Column="1" Grid.Row="1">Middle</TextBlock>

<TextBlock Grid.Column="2" Grid.Row="2">LRight</TextBlock>

</Grid>

</Window>

Databinding example

<StackPanel Name="pnlMain">

<TextBlock>Name: </TextBlock>

<TextBox Name="txtName"

Text="{Binding Path=Name}“/>

<TextBlock>City:</TextBlock>

<TextBox Name="txtCity"

Text="{Binding Path=City}“/>

<StackPanel Orientation="Horizontal">

<Button Name="btnPrevious“

Click="btnPrevious_Click"><</Button>

<Button Name="btnNext“

Click="btnNext_Click">></Button>

</StackPanel>

<ListBox Name="lstCustomers“

IsSynchronizedWithCurrentItem="True“

ItemsSource="{Binding}"/>

</StackPanel>

Hello World

• C# example

using System;

using System.Windows;

namespace AvalonExample {

class MyApp {

[STAThread]

static void Main(){

MessageBox.Show(“Hello World!”);

}

}

}

Hello World

• XAML example

<Page

xmlns="http://schemas.microsoft.com/winfx/a

valon/2005"

xmlns:x="http://schemas.microsoft.com/winfx

/xaml/2005">

<TextBlock>Hello World!</TextBlock>

</Page>

Application Object

• Application object acts as container for more
complex applications

MainWindow

Application events like

Startup & Shutdown

public class MyApp : Application

{

[STAThread]

static void Main(string[] args)

{

MyApp app = new MyApp();

app.Startup += app.OnApplicationStartup;

app.Run(args);

}

void OnApplicationStartup(object sender,

StartupEventArgs e)

{

Window w = new Window();

w.Title = "Mark says: Hello World!";

w.Show();

}

}

Reading/ reference
http://prospero.murdoch.edu.au/record=b2962782~S1

Chapter 13. Building Universal
Windows Platform Apps Using
XAML

http://prospero.murdoch.edu.au/record=b2962782~S1

Reading/ reference
http://prospero.murdoch.edu.au/record=b2962780~S1

Chapter: Introducing Windows
Communication Foundation

Chapter: Introducing Windows
Presentation Foundation and XAML

Chapter: Programming with WPF
Controls

Chapter: WPF Graphics Rendering
Services

Chapter: WPF Resources,
Animations, Styles, and Templates

Chapter: Notifications, Commands,
Validation, and MVVM

http://prospero.murdoch.edu.au/record=b2962780~S1

Video

• Developing Universal Windows Apps with
C# and XAML

https://mva.microsoft.com/en-us/training-
courses/developing-universal-windows-apps-with-
c-and-xaml-8363?l=8pXSyBGz_3904984382

https://mva.microsoft.com/en-us/training-
courses/developing-universal-windows-apps-with-
c-and-xaml-8363?l=XYrwDDGz_7804984382

https://mva.microsoft.com/en-us/training-courses/developing-universal-windows-apps-with-c-and-xaml-8363?l=8pXSyBGz_3904984382
https://mva.microsoft.com/en-us/training-courses/developing-universal-windows-apps-with-c-and-xaml-8363?l=XYrwDDGz_7804984382

MSDN

• Create a "Hello, world" app (XAML)

• https://msdn.microsoft.com/en-
us/windows/uwp/get-started/create-a-hello-
world-app-xaml-universal

• What's a Universal Windows Platform
(UWP) app?

• https://docs.microsoft.com/en-
us/windows/uwp/get-started/whats-a-uwp

https://msdn.microsoft.com/en-us/windows/uwp/get-started/create-a-hello-world-app-xaml-universal
https://docs.microsoft.com/en-us/windows/uwp/get-started/whats-a-uwp

MSDN

Create a "Hello, world" app (XAML)

https://docs.microsoft.com/en-us/windows/uwp/get-
started/create-a-hello-world-app-xaml-universal

Acknowledgment

Sources used in this presentation include:

XAML Tutorial https://www.tutorialspoint.com/xaml/

60

https://docs.microsoft.com/en-us/windows/uwp/get-started/create-a-hello-world-app-xaml-universal
https://www.tutorialspoint.com/xaml/

